Prevalence and Genotypic Distribution of Bovine Leukemia Virus across Asian Regions: Insights into Economic Significance and Clinical Staging
DOI:
https://doi.org/10.71320/bcs.0008Keywords:
Bovine Leukemia Virus (BLV), Genotype, Prevalence, Asia, CattleAbstract
This study critically reviews the literature on the prevalence and genotypic distribution of Bovine Leukemia Virus (BLV) in Asia, specifically targeting enzootic bovine leukosis, a chronic disease affecting cattle’s life and milk production along with reduced fat yield, that causing economic losses due to increased susceptibility to pathogens. European countries are eradicating BLV but Asia has a high prevalence, particularly in Asian cattle. Enzootic bovine leukosis (EBL) has distinct clinical stages: asymptomatic, persistent lymphocytosis, and lymphosarcoma. It typically occurs in adult animals, with 60% being asymptomatic during the aleukemic stage, 30% developing persistent lymphocytosis, and 5% developing lymphoma. Databases like PubMed and Google Scholar were used to search molecular and prevalence studies from 2000-2024, focusing on Asian countries. Prevalence of bovine leukosis (BL) in Asia varies significantly, with high rates in central and eastern regions. BLV is a global disease, has increased in Asia with highest prevalence in central Asia about 40.0–84.0% (Kazakhstan), 35% in Eastern Asia (Japan), and 58.3% in Southeast Asia (Thailand). BLV genotypes G1, G4, G6, G7, G12, G3, G4, G6, G7, and G10 are prevalent in various regions of Asia, with G1 being most prevalent globally. These genotypes might be spread due to animal trading, and animal domestication, affecting various countries. This review provides the current status of enzootic bovine leukosis in Asia, emphasising the need for a closed trading system to control the disease.
References
Ababneh, M. M., Al-Rukibat, R. K., Hananeh, W. M., Nasar, A. T., & Al-Zghoul, M. B. (2012). Detection and molecular characterization of bovine leukemia viruses from Jordan. Arch Virol, 157(12), 2343-2348. https://doi.org/10.1007/s00705-012-1447-z DOI: https://doi.org/10.1007/s00705-012-1447-z
Abdala, A., Alvarez, I., Brossel, H., Calvinho, L., Carignano, H., Franco, L., Gazon, H., Gillissen, C., Hamaidia, M., & Hoyos, C. (2019). BLV: lessons on vaccine development. Retrovirology, 16(1), 1-6. https://doi.org/10.1186/s12977-019-0488-8 DOI: https://doi.org/10.1186/s12977-019-0488-8
Alkan, F., Karayel-Hacioglu, I., Duran Yelken, S., & Coskun, N. (2021). The genotype determination and molecular characterization of bovine leukemia virus in Turkey. Veterinarski Arhiv, 91(3), 237-247. https://doi.org/10.24099/vet.arhiv.1214 DOI: https://doi.org/10.24099/vet.arhiv.1214
Amirpour Haredasht, S., Vidal, G., Edmondson, A., Moore, D., Silva-del-Río, N., & Martínez-López, B. (2018). Characterization of the temporal trends in the rate of cattle carcass condemnations in the US and dynamic modeling of the condemnation reasons in California with a seasonal component. Frontiers in veterinary science, 5, 87. https://doi.org/10.3389/fvets.2018.00087 DOI: https://doi.org/10.3389/fvets.2018.00087
Barez, P. Y., de Brogniez, A., Carpentier, A., Gazon, H., Gillet, N., Gutierrez, G., Hamaidia, M., Jacques, J. R., Perike, S., Neelature Sriramareddy, S., Renotte, N., Staumont, B., Reichert, M., Trono, K., & Willems, L. (2015). Recent Advances in BLV Research. Viruses, 7(11), 6080-6088. https://doi.org/10.3390/v7112929 DOI: https://doi.org/10.3390/v7112929
Bartlett, P. C., Norby, B., Byrem, T. M., Parmelee, A., Ledergerber, J. T., & Erskine, R. J. (2013). Bovine leukemia virus and cow longevity in Michigan dairy herds. J Dairy Sci, 96(3), 1591-1597. https://doi.org/10.3168/jds.2012-5930 DOI: https://doi.org/10.3168/jds.2012-5930
Burgu, I., Alkan, F., Karaoglu, T., Bilge-Dagalp, S., Can-Sahna, K., Gungor, B., & Demir, B. (2005). Control and eradication programme of enzootic bovine leucosis (EBL) from selected dairy herds in Turkey. Dtsch Tierarztl Wochenschr, 112(7), 271-274. https://www.ncbi.nlm.nih.gov/pubmed/16124702
Burng, A. (1980). Bovine leukemia virus: molecular biology and epidemiology. Viral oncology, 231-289.
Corredor-Figueroa, A. P., Salas, S., Olaya-Galan, N. N., Quintero, J. S., Fajardo, A., Sonora, M., Moreno, P., Cristina, J., Sanchez, A., Tobon, J., Ortiz, D., & Gutierrez, M. F. (2020). Prevalence and molecular epidemiology of bovine leukemia virus in Colombian cattle. Infect Genet Evol, 80, 104171. https://doi.org/10.1016/j.meegid.2020.104171 DOI: https://doi.org/10.1016/j.meegid.2020.104171
Da, Y., Shanks, R. D., Stewart, J. A., & Lewin, H. A. (1993). Milk and fat yields decline in bovine leukemia virus-infected Holstein cattle with persistent lymphocytosis. Proc Natl Acad Sci U S A, 90(14), 6538-6541. https://doi.org/10.1073/pnas.90.14.6538 DOI: https://doi.org/10.1073/pnas.90.14.6538
De Brun, L., Mionetto, M., Rodríguez, F., Brandl, S., Hubner, S., Fischer, G., & Puentes, R. (2023). Natural association between bovine leukemia virus and reproductive infectious diseases. Acta Scientiae Veterinariae, 51. 10.22456/1679-9216.129251 DOI: https://doi.org/10.22456/1679-9216.129251
Degirmenci, H. (2011). Detection of bovine leukemia virus by using serological and molecular methods in Marmara region PhD Thesis, Istanbul University, Istanbul, Turkey].
do Nascimento, A. M. M., de Souza, C. M. S., Oliveira, A. C. D., Blagitz, M. G., Sanchez, E. M. R., Della Libera, A. M. M. P., Leite, R. d. M. H., de Carvalho Fernandes, A. C., Souza, F. N. J. V. I., & Immunopathology. (2023). The bovine leukemia virus infection prolongs immunosuppression in dairy cows during the periparturient period by sustaining higher expression of immunological checkpoints in T cells. Vet Immunol Immunopathol, 263, 110636. https://doi.org/10.1016/j.vetimm.2023.110636 DOI: https://doi.org/10.1016/j.vetimm.2023.110636
Elemans, M., Florins, A., Willems, L., & Asquith, B. (2014). Rates of CTL killing in persistent viral infection in vivo. PLoS Comput Biol, 10(4), e1003534. https://doi.org/10.1371/journal.pcbi.1003534 DOI: https://doi.org/10.1371/journal.pcbi.1003534
Emanuelson, U., Scherling, K., & Pettersson, H. (1992). Relationships between herd bovine leukemia virus infection status and reproduction, disease incidence, and productivity in Swedish dairy herds. Preventive veterinary medicine, 12(1-2), 121-131. https://doi.org/10.1016/0167-5877(92)90075-q DOI: https://doi.org/10.1016/0167-5877(92)90075-Q
Erskine, R., Bartlett, P., Byrem, T., Render, C., Febvay, C., & Houseman. (2012). Association between bovine leukemia virus, production, and population age in Michigan dairy herds. Journal of Dairy Science, 95(2), 727-734. https://doi.org/10.3168/jds.2011-4760 DOI: https://doi.org/10.3168/jds.2011-4760
Erskine, R. J., Bartlett, P. C., Sabo, K. M., & Sordillo, L. M. (2011). Bovine Leukemia Virus Infection in Dairy Cattle: Effect on Serological Response to Immunization against J5 Escherichia coli Bacterin. Vet Med Int, 2011, 915747. https://doi.org/10.4061/2011/915747 DOI: https://doi.org/10.4061/2011/915747
Feliziani, F., Martucciello, A., Iscaro, C., Vecchio, D., Petrini, S., Grassi, C., Bazzucchi, M., & De Carlo, E. (2017). Bovine leukemia virus: Experimental infection in buffaloes and evaluation of diagnostic test reliability. Res Vet Sci, 114, 450-454. https://doi.org/10.1016/j.rvsc.2017.07.021 DOI: https://doi.org/10.1016/j.rvsc.2017.07.021
Florins, A., Boxus, M., Vandermeers, F., Verlaeten, O., Bouzar, A. B., Defoiche, J., Hubaux, R., Burny, A., Kettmann, R., & Willems, L. (2008). Emphasis on cell turnover in two hosts infected by bovine leukemia virus: a rationale for host susceptibility to disease. Vet Immunol Immunopathol, 125(1-2), 1-7. https://doi.org/10.1016/j.vetimm.2008.04.007 DOI: https://doi.org/10.1016/j.vetimm.2008.04.007
Florins, A., Gillet, N., Asquith, B., Boxus, M., Burteau, C., Twizere, J. C., Urbain, P., Vandermeers, F., Debacq, C., Sanchez-Alcaraz, M. T., Schwartz-Cornil, I., Kerkhofs, P., Jean, G., Thewis, A., Hay, J., Mortreux, F., Wattel, E., Reichert, M., Burny, A.,…Willems, L. (2007). Cell dynamics and immune response to BLV infection: a unifying model. Front Biosci, 12, 1520-1531. https://doi.org/10.2741/2165 DOI: https://doi.org/10.2741/2165
Gautam, S., Mishra, N., Kalaiyarasu, S., Jhade, S. K., & Sood, R. (2018). Molecular Characterization of Bovine Leukaemia Virus (BLV) Strains Reveals Existence of Genotype 6 in Cattle in India with evidence of a new subgenotype. Transbound Emerg Dis, 65(6), 1968-1978. https://doi.org/10.1111/tbed.12979 DOI: https://doi.org/10.1111/tbed.12979
Gillet, N., Florins, A., Boxus, M., Burteau, C., Nigro, A., Vandermeers, F., Balon, H., Bouzar, A. B., Defoiche, J., Burny, A., Reichert, M., Kettmann, R., & Willems, L. (2007). Mechanisms of leukemogenesis induced by bovine leukemia virus: prospects for novel anti-retroviral therapies in human. Retrovirology, 4(1), 18. https://doi.org/10.1186/1742-4690-4-18 DOI: https://doi.org/10.1186/1742-4690-4-18
Hassan, N. A. D., Mohteshamuddin, K., Anthony, A., Al Aiyan, A., Mohamed, M. E. H., Abdalla Alfaki, I. M., & Barigye, R. (2020). Serological evidence of enzootic bovine leukosis in the periurban dairy cattle production system of Al Ain, United Arab Emirates. Trop Anim Health Prod, 52(5), 2327-2332. https://doi.org/10.1007/s11250-020-02262-1 DOI: https://doi.org/10.1007/s11250-020-02262-1
Hsieh, J. C., Li, C. Y., Hsu, W. L., & Chuang, S. T. (2019). Molecular Epidemiological and Serological Studies of Bovine Leukemia Virus in Taiwan Dairy Cattle. Front Vet Sci, 6, 427. https://doi.org/10.3389/fvets.2019.00427 DOI: https://doi.org/10.3389/fvets.2019.00427
Joris, T., Safari, R., Jacques, J.-R., & Willems, L. (2021). Bovine leukemia virus (Retroviridae). https://doi.org/10.1016/b978-0-12-814515-9.00059-x DOI: https://doi.org/10.1016/B978-0-12-814515-9.00059-X
Juliarena, M. A., Barrios, C. N., Lützelschwab, C. M., Esteban, E. N., & Gutierrez, S. E. (2017). Bovine leukemia virus: current perspectives. Virus Adaptation and Treatment. https://doi.org/10.2147/VAAT.S113947 DOI: https://doi.org/10.2147/VAAT.S113947
Katoch, S., Dohru, S., Sharma, M., Vashist, V., Chahota, R., Dhar, P., Thakur, A., & Verma, S. (2017). Seroprevalence of viral and bacterial diseases among the bovines in Himachal Pradesh, India. Veterinary World, 10(12), 1421. https://doi.org/10.14202/vetworld.2017.1421-1426 DOI: https://doi.org/10.14202/vetworld.2017.1421-1426
Kazemimanesh, M., Madadgar, O., Steinbach, F., Choudhury, B., & Azadmanesh, K. (2019). Detection and molecular characterization of bovine leukemia virus in various regions of Iran. Journal of General Virology, 100(9), 1315-1327. https://doi.org/10.1099/jgv.0.001303 DOI: https://doi.org/10.1099/jgv.0.001303
Kettmann, R., Cleuter, Y., Mammerickx, M., Meunier-Rotival, M., Bernardi, G., Burny, A., & Chantrenne, H. (1980). Genomic integration of bovine leukemia provirus: comparison of persistent lymphocytosis with lymph node tumor form of enzootic. Proc Natl Acad Sci U S A, 77(5), 2577-2581. https://doi.org/10.1073/pnas.77.5.2577 DOI: https://doi.org/10.1073/pnas.77.5.2577
Khan, M. F., Siddique, U., Shah, A. A., Khan, I., Anwar, F., Ahmad, I., Zeb, M. T., Hassan, M. F., & Ali, T. (2020). Seroprevalence of bovine leukemia virus (BLV) in cattle from the north west of Pakistan. Pakistan Veterinary Journal. https://doi.org/10.29261/pakvetj/2019.103 DOI: https://doi.org/10.29261/pakvetj/2019.103
Khudhair, Y. I., Hasso, S. A., Yaseen, N. Y., & Al-Shammari, A. M. (2016a). Serological and molecular detection of bovine leukemia virus in cattle in Iraq. Emerg Microbes Infect, 5(6), e56. https://doi.org/10.1038/emi.2016.60
Khudhair, Y. I., Hasso, S. A., Yaseen, N. Y., & Al-Shammari, A. M. (2016b). Serological and molecular detection of bovine leukemia virus in cattle in Iraq. Emerg. microbes & infect., 5(6), e56. https://doi.org/10.1038/emi.2016.60 DOI: https://doi.org/10.1038/emi.2016.60
Kim, H.-U., Lee, E.-Y., Lee, K.-K., Kim, S.-H., Moon, B.-Y., So, B.-J., & Kim, Y.-H. (2017). Seroprevalence of the bovine leukemia virus among Korean native cattle in South Korea. Preventive veterinary medicine, 41(1), 52-55. https://doi.org/10.14202/vetworld.2024.1715-1721 DOI: https://doi.org/10.13041/jpvm.2017.41.1.52
Kiugu, E. K. (2018). Seroprevalence of bovine leukosis infection in selected farming systems in Kenya http://hdl.handle.net/11295/104163
Kuczewski, A., Adams, C., Lashewicz, B., & van der Meer, F. (2022). Alberta dairy farmers' and veterinarians' opinion about bovine leukemia virus control measures. Prev Vet Med, 200, 105590. https://doi.org/10.1016/j.prevetmed.2022.105590 DOI: https://doi.org/10.1016/j.prevetmed.2022.105590
Le, D. T., Yamashita-Kawanishi, N., Okamoto, M., Nguyen, S. V., Nguyen, N. H., Sugiura, K., Miura, T., & Haga, T. (2020). Detection and genotyping of bovine leukemia virus (BLV) in Vietnamese cattle. J Vet Med Sci, 82(7), 1042-1050. https://doi.org/10.1292/jvms.20-0094 DOI: https://doi.org/10.1292/jvms.20-0094
Lee, E., Kim, E. J., Joung, H. K., Kim, B. H., Song, J. Y., Cho, I. S., Lee, K. K., & Shin, Y. K. (2015). Sequencing and phylogenetic analysis of the gp51 gene from Korean bovine leukemia virus isolates. Virol J, 12, 64. https://doi.org/10.1186/s12985-015-0286-4 DOI: https://doi.org/10.1186/s12985-015-0286-4
Lee, E., Kim, E. J., Ratthanophart, J., Vitoonpong, R., Kim, B. H., Cho, I. S., Song, J. Y., Lee, K. K., & Shin, Y. K. (2016). Molecular epidemiological and serological studies of bovine leukemia virus (BLV) infection in Thailand cattle. Infect Genet Evol, 41, 245-254. https://doi.org/10.1016/j.meegid.2016.04.010 DOI: https://doi.org/10.1016/j.meegid.2016.04.010
Leisering, A. (1871). Hypertrophy der Malpigischen Korperchen der Milz. Bericht uber das Veterinarwesen im Konigreich Sachsen, 16, 15-16.
Lv, G., Wang, J., Lian, S., Wang, H., & Wu, R. (2024). The Global Epidemiology of Bovine Leukemia Virus: Current Trends and Future Implications. Animals (Basel), 14(2), 297. https://doi.org/10.3390/ani14020297 DOI: https://doi.org/10.3390/ani14020297
Ma, B.-Y., Gong, Q.-L., Sheng, C.-Y., Liu, Y., Ge, G.-Y., Li, D.-L., Diao, N.-C., Shi, K., Li, J.-M., & Sun, Z.-B. (2021). Prevalence of bovine leukemia in 1983–2019 in China: A systematic review and meta-analysis. Microbial pathogenesis, 150, 104681. https://doi.org/10.1016/j.micpath.2020.104681 DOI: https://doi.org/10.1016/j.micpath.2020.104681
Mamanova, S., Kalisynov, B., Saduakasova, M., Bashenova, E., & Maukish, A. (2020). Analysis of the epizootic situation on bovine leukemia for 2015–2019 in the East Kazakhstan region. Collect. KazSRVI, 66, 60-64.
Marawan, M. A., Alouffi, A., El Tokhy, S., Badawy, S., Shirani, I., Dawood, A., Guo, A., Almutairi, M. M., Alshammari, F. A., & Selim, A. (2021). Bovine Leukaemia Virus: Current Epidemiological Circumstance and Future Prospective. Viruses, 13(11), 2167. https://doi.org/10.3390/v13112167 DOI: https://doi.org/10.3390/v13112167
Matsumura, K., Inoue, E., Osawa, Y., & Okazaki, K. (2011). Molecular epidemiology of bovine leukemia virus associated with enzootic bovine leukosis in Japan. Virus Res, 155(1), 343-348. https://doi.org/10.1016/j.virusres.2010.11.005 DOI: https://doi.org/10.1016/j.virusres.2010.11.005
Meas, S., Ohashi, K., Tum, S., Chhin, M., Te, K., Miura, K., Sugimoto, C., & Onuma, M. (2000). Seroprevalence of bovine immunodeficiency virus and bovine leukemia virus in draught animals in Cambodia. J Vet Med Sci, 62(7), 779-781. https://doi.org/10.1292/jvms.62.779 DOI: https://doi.org/10.1292/jvms.62.779
Meas, S., Yilmaz, Z., Usui, T., Torun, S., Yesilbag, K., Ohashi, K., & Onuma, M. (2003). Evidence of bovine immunodeficiency virus in cattle in Turkey. Jpn J Vet Res, 51(1), 3-8. https://doi.org/10.14943/jjvr.51.1.3
Mekata, H., Sekiguchi, S., Konnai, S., & Kirino, Y. (2019). Current prevalence and risk factors associated with bovine leukemia virus infection in Japanese dairy farms. Journal of veterinary Medical Science, 81(9).
Moe, K. K., Polat, M., Borjigin, L., Matsuura, R., Hein, S. T., Moe, H. H., & Aida, Y. (2020). New evidence of bovine leukemia virus circulating in Myanmar cattle through epidemiological and molecular characterization. PloS one, 15(2), e0229126. https://doi.org/10.1371/journal.pone.0229126 DOI: https://doi.org/10.1371/journal.pone.0229126
Molnar, E., Molnar, L., Guedes, V. T., & de Lima, E. S. (2000). Naturally occurring bovine leukosis virus in water buffalo (Bubalus bubalis) in Brazil. Vet Rec, 146(24), 705-706. https://doi.org/10.1136/vr.146.24.705 DOI: https://doi.org/10.1136/vr.146.24.705
Mousavi, S., Haghparast, A., Mohammadi, G., & Tabatabaeizadeh, S.-E. (2014). Prevalence of bovine leukemia virus (BLV) infection in the northeast of Iran. Veterinary research forum: an international quarterly journal,
Murakami, K., Kobayashi, S., Konishi, M., Kameyama, K.-i., & Tsutsui, T. (2013). Nationwide survey of bovine leukemia virus infection among dairy and beef breeding cattle in Japan from 2009–2011. Journal of veterinary Medical Science, 75(8), 1123-1126. https://doi.org/10.1292/jvms.12-0374 DOI: https://doi.org/10.1292/jvms.12-0374
Nakada, S., Fujimoto, Y., Kohara, J., Adachi, Y., & Makita, K. (2022). Estimation of economic loss by carcass weight reduction of Japanese dairy cows due to infection with bovine leukemia virus. Preventive veterinary medicine, 198, 105528. https://doi.org/10.1016/j.prevetmed.2021.105528 DOI: https://doi.org/10.1016/j.prevetmed.2021.105528
Nakada, S., Fujimoto, Y., Kohara, J., & Makita, K. (2023). Economic losses associated with mastitis due to bovine leukemia virus infection. Journal of Dairy Science, 106(1), 576-588. https://doi.org/10.3168/jds.2021-21722 DOI: https://doi.org/10.3168/jds.2021-21722
Nekoei, S., Hafshejani, T. T., Doosti, A., & Khamesipour, F. (2015). Molecular detection of bovine leukemia virus in peripheral blood of Iranian cattle, camel and sheep. Pol J Vet Sci, 18(4), 703-707. https://doi.org/10.1515/pjvs-2015-0091 DOI: https://doi.org/10.1515/pjvs-2015-0091
Nekouei, O., VanLeeuwen, J., Stryhn, H., Kelton, D., & Keefe, G. (2016). Lifetime effects of infection with bovine leukemia virus on longevity and milk production of dairy cows. Prev Vet Med, 133, 1-9. https://doi.org/10.1016/j.prevetmed.2016.09.011 DOI: https://doi.org/10.1016/j.prevetmed.2016.09.011
Nishikaku, K., Nishibori, M., Imakawa, K., & Kobayashi, T. (2022). Phylogenomics and spatiotemporal dynamics of bovine leukemia virus focusing on Asian native cattle: insights into the early origin and global dissemination. Frontiers of Microbiology, 13, 917324. https://doi.org/10.3389/fmicb.2022.917324 DOI: https://doi.org/10.3389/fmicb.2022.917324
Nishikaku, K., Noguchi, T., Murakami, S., Torii, Y., & Kobayashi, T. (2022). Molecular analysis of bovine leukemia virus in early epidemic phase in Japan using archived formalin fixed paraffin embedded histopathological specimens. J Vet Med Sci, 84(3), 350-357. https://doi.org/10.1292/jvms.21-0570 DOI: https://doi.org/10.1292/jvms.21-0570
Nishimori, A., Konnai, S., Okagawa, T., Maekawa, N., Goto, S., Ikebuchi, R., Nakahara, A., Chiba, Y., Ikeda, M., & Murata, S. (2017). Identification of an atypical enzootic bovine leukosis in Japan by using a novel classification of bovine leukemia based on immunophenotypic analysis. Clinical and Vaccine Immunology, 24(9), e00067-00017. https://doi.org/10.1128/CVI.00067-17 DOI: https://doi.org/10.1128/CVI.00067-17
Norby, B., Bartlett, P. C., Byrem, T. M., & Erskine, R. J. (2016). Effect of infection with bovine leukemia virus on milk production in Michigan dairy cows. J Dairy Sci, 99(3), 2043-2052. https://doi.org/10.3168/jds.2015-10089 DOI: https://doi.org/10.3168/jds.2015-10089
Ochirkhuu, N., Konnai, S., Odbileg, R., Nishimori, A., Okagawa, T., Murata, S., & Ohashi, K. (2016). Detection of bovine leukemia virus and identification of its genotype in Mongolian cattle. Arch Virol, 161(4), 985-991. https://doi.org/10.1007/s00705-015-2676-8
Ochirkhuu, N., Konnai, S., Odbileg, R., Nishimori, A., Okagawa, T., Murata, S., & Ohashi, K. (2016). Detection of bovine leukemia virus and identification of its genotype in Mongolian cattle. Arch. Virol., 161(4), 985-991. DOI: https://doi.org/10.1007/s00705-015-2676-8
Okagawa, T., Konnai, S., Ikebuchi, R., Suzuki, S., Shirai, T., Sunden, Y., Onuma, M., Murata, S., & Ohashi, K. (2012). Increased bovine Tim-3 and its ligand expressions during bovine leukemia virus infection. Vet Res, 43(1), 45. https://doi.org/10.1186/1297-9716-43-45 DOI: https://doi.org/10.1186/1297-9716-43-45
Olaya-Galán, N. N., Corredor-Figueroa, A. P., Velandia-Álvarez, S., Vargas-Bermudez, D. S., Fonseca-Ahumada, N., Nuñez, K., Jaime, J., & Gutiérrez, M. F. (2022). Evidence of bovine leukemia virus circulating in sheep and buffaloes in Colombia: insights into multispecies infection. Archives of Virology, 167(3), 807-817. https://doi.org/10.1007/s00705-021-05285-7 DOI: https://doi.org/10.1007/s00705-021-05285-7
Ott, S., Johnson, R., & Wells, S. (2003). Association between bovine-leukosis virus seroprevalence and herd-level productivity on US dairy farms. Preventive veterinary medicine, 61(4), 249-262. https://doi.org/10.1016/j.prevetmed.2003.08.003 DOI: https://doi.org/10.1016/j.prevetmed.2003.08.003
Pluta, A., Rola-Łuszczak, M., Douville, R. N., & Kuźmak, J. (2018). Bovine leukemia virus long terminal repeat variability: identification of single nucleotide polymorphisms in regulatory sequences. Virology Journal, 15, 1-14. https://doi.org/10.1186/s12985-018-1062-z DOI: https://doi.org/10.1186/s12985-018-1062-z
Polat, M., Ohno, A., Takeshima, S. N., Kim, J., Kikuya, M., Matsumoto, Y., Mingala, C. N., Onuma, M., & Aida, Y. (2015). Detection and molecular characterization of bovine leukemia virus in Philippine cattle. Arch Virol, 160(1), 285-296. https://doi.org/10.1007/s00705-014-2280-3 DOI: https://doi.org/10.1007/s00705-014-2280-3
Quadros, D. L., Puhl, K., Ribeiro, V. A., Frandoloso, R., & Kreutz, L. C. (2024). The transmission of bovine leukemia virus to calves occurs mostly through colostrum and milk. Veterinary World, 17(12), 2918. https://doi.org/10.14202/vetworld.2024.2918-2924 DOI: https://doi.org/10.14202/vetworld.2024.2918-2924
Radostits, O. M., Gay, C., Hinchcliff, K. W., & Constable, P. D. (2006). Veterinary Medicine E-Book: A textbook of the diseases of cattle, horses, sheep, pigs and goats. Elsevier Health Sciences.
Reed, V. I. (1981). Enzootic bovine leukosis. Can Vet J, 22(4), 95-102. https://www.ncbi.nlm.nih.gov/pubmed/6265053
Rodríguez, S. M., Florins, A., Gillet, N., De Brogniez, A., Sánchez-Alcaraz, M. T., Boxus, M., Boulanger, F., Gutiérrez, G., Trono, K., & Alvarez, I. J. V. (2011). Preventive and therapeutic strategies for bovine leukemia virus: lessons for HTLV. 3(7), 1210. DOI: https://doi.org/10.3390/v3071210
Rola-Łuszczak, M., Pluta, A., Olech, M., Donnik, I., Petropavlovskiy, M., Gerilovych, A., Vinogradova, I., Choudhury, B., & Kuźmak, J. (2013). The molecular characterization of bovine leukaemia virus isolates from Eastern Europe and Siberia and its impact on phylogeny. PloS one, 8(3), e58705. https://doi.org/10.1371/journal.pone.0058705 DOI: https://doi.org/10.1371/journal.pone.0058705
Rola-Łuszczak, M., Sakhawat, A., Pluta, A., Ryło, A., Bomba, A., Bibi, N., & Kuźmak, J. (2021). Molecular characterization of the env gene of bovine leukemia virus in cattle from Pakistan with NGS-based evidence of virus heterogeneity. pathogens, 10(7), 910. https://doi.org/10.3390/pathogens10070910 DOI: https://doi.org/10.3390/pathogens10070910
Romero, C., Aguiar, A., Zanocchi, H., Abaracon, D., & Rowe, C. (1981). Susceptibility of the water buffalo (Bubalis bubalis) to enzootic bovine leukosis virus. Pesquisa Veterinaria Brasileria. DOI: https://doi.org/10.1007/BF02237902
Sajiki, Y., Konnai, S., Nishimori, A., Okagawa, T., Maekawa, N., Goto, S., Nagano, M., Kohara, J., Kitano, N., Takahashi, T., Tajima, M., Mekata, H., Horii, Y., Murata, S., & Ohashi, K. (2017). Intrauterine infection with bovine leukemia virus in pregnant dam with high viral load. J Vet Med Sci, 79(12), 2036-2039. https://doi.org/10.1292/jvms.17-0391 DOI: https://doi.org/10.1292/jvms.17-0391
Samad, A., Meghla, N. S., Nain, Z., Karpinski, T. M., & Rahman, M. S. (2022). Immune epitopes identification and designing of a multi-epitope vaccine against bovine leukemia virus: a molecular dynamics and immune simulation approaches. Cancer Immunol Immunother, 71(10), 2535-2548. https://doi.org/10.1007/s00262-022-03181-w DOI: https://doi.org/10.1007/s00262-022-03181-w
Santos, I. R., Henker, L. C., Kemper, R. T., Bertolini, M., Driemeier, D., & Pavarini, S. P. (2023). Enzootic bovine leukosis in a cow. Brazillian Journal of Veterinary Pathology, 16(1), 71-77. DOI: https://doi.org/10.24070/bjvp.1983-0246.v16i1p71-77
Shrestha, S., Orsel, K., Barkema, H. W., Martins, L., Shrestha, S., & van der Meer, F. (2024). Effects of bovine leukemia virus seropositivity and proviral load on milk, fat, and protein production of dairy cows. J Dairy Sci, 107(1), 530-539. https://doi.org/10.3168/jds.2023-23695 DOI: https://doi.org/10.3168/jds.2023-23695
Suarez Archilla, G., Gutierrez, G., Camussone, C., Calvinho, L., Abdala, A., Alvarez, I., Petersen, M., Franco, L., Destefano, G., Monti, G., Jacques, J. R., Joris, T., Willems, L., & Trono, K. (2022). A safe and effective vaccine against bovine leukemia virus. Front Immunol, 13, 980514. https://doi.org/10.3389/fimmu.2022.980514 DOI: https://doi.org/10.3389/fimmu.2022.980514
Sultanov, A., Rola-Luszczak, M., Mamanova, S., Rylo, A., Osinski, Z., Saduakassova, M. A., Bashenova, E., & Kuzmak, J. (2022). Molecular Characterization of Bovine Leukemia Virus with the Evidence of a New Genotype Circulating in Cattle from Kazakhstan. pathogens, 11(2), 180. https://doi.org/10.3390/pathogens11020180 DOI: https://doi.org/10.3390/pathogens11020180
Suzuki, S., Konnai, S., Okagawa, T., Ikebuchi, R., Shirai, T., Sunden, Y., Mingala, C. N., Murata, S., & Ohashi, K. (2013). Expression analysis of Foxp3 in T cells from bovine leukemia virus infected cattle. Microbiol Immunol, 57(8), 600-604. https://doi.org/10.1111/1348-0421.12073 DOI: https://doi.org/10.1111/1348-0421.12073
Taxis, T. M., Harbowy, R. M., Niles, D., Sporer, K. R. B., & Bartlett, P. C. (2023). Controlling bovine leukemia virus in a large dairy herd by selective culling based on diagnostic testing. Applied Animal Science, 39(2), 40-43. https://doi.org/10.15232/aas.2022-02347 DOI: https://doi.org/10.15232/aas.2022-02347
Trono, K. G., Perez-Filgueira, D. M., Duffy, S., Borca, M. V., & Carrillo, C. (2001). Seroprevalence of bovine leukemia virus in dairy cattle in Argentina: comparison of sensitivity and specificity of different detection methods. Vet Microbiol, 83(3), 235-248. https://doi.org/10.1016/s0378-1135(01)00420-5 DOI: https://doi.org/10.1016/S0378-1135(01)00420-5
Tsutsui, T., Kobayashi, S., Hayama, Y., & Yamamoto, T. (2016). Fraction of bovine leukemia virus-infected dairy cattle developing enzootic bovine leukosis. Prev Vet Med, 124, 96-101. https://doi.org/10.1016/j.prevetmed.2015.11.019 DOI: https://doi.org/10.1016/j.prevetmed.2015.11.019
Wang, M., Wang, Y., Baloch, A. R., Pan, Y., Xu, F., Tian, L., & Zeng, Q. (2018). Molecular epidemiology and characterization of bovine leukemia virus in domestic yaks (Bos grunniens) on the Qinghai-Tibet Plateau, China. Arch Virol, 163(3), 659-670. https://doi.org/10.1007/s00705-017-3658-9 DOI: https://doi.org/10.1007/s00705-017-3658-9
White, T. L., & Moore, D. A. (2009). Reasons for whole carcass condemnations of cattle in the United States and implications for producer education and veterinary intervention. J Am Vet Med Assoc, 235(8), 937-941. https://doi.org/10.2460/javma.235.8.937 DOI: https://doi.org/10.2460/javma.235.8.937
Yu, C., Wang, X., Zhou, Y., Wang, Y., Zhang, X., & Zheng, Y. (2019). Genotyping bovine leukemia virus in dairy cattle of Heilongjiang, northeastern China. BMC Vet Res, 15(1), 179. https://doi.org/10.1186/s12917-019-1863-3 DOI: https://doi.org/10.1186/s12917-019-1863-3
Zhao, Y., Zhu, X., Zhang, Z., Chen, J., Chen, Y., Hu, C., Chen, X., Robertson, I. D., & Guo, A. (2024). The Prevalence and Molecular Characterization of Bovine Leukemia Virus among Dairy Cattle in Henan Province, China. Viruses, 16(9), 1399. https://doi.org/10.3390/v16091399 DOI: https://doi.org/10.3390/v16091399

Published
Issue
Section
Categories
License
Copyright (c) 2025 Bio Communications

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © Bio Communications. This article is published under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license. Under this license, you are free to share (copy and redistribute) this material in any medium or format for non-commercial purposes, provided you give appropriate credit to the author(s) and the journal. No modifications or adaptations of the material are permitted. The copyright for this article remains with the journal Bio Communications.